
Basic python job submission I. Single command
To begin we will go through a simple job submission. In this example, we will submit a job that runs a single command (in this case, the
command "hostname") on one worker. This is the simplest form of job submission.

#!/usr/bin/env python3
Below are required imports for the script to run
import os, sys
The next few lines attempt to import the Qube API. If the path to the qb module
is not in $PATH or $PYTHONPATH, we will attempt to find it by looking in known
locations
try:
 import qb
except ImportError:
 if os.environ.get("QBDIR"):
 qbdir_api = os.path.join(os.environ.get("QBDIR"),"api","python")
 for api_path in (qbdir_api,
 "/Applications/pfx/qube/api/python/",
 "/usr/local/pfx/qube/api/python/",
 "C:\\Program Files\\pfx\\qube\\api\\python",
 "C:\\Program Files (x86)\\pfx\\qube\\api\\python"):
 if api_path not in sys.path and os.path.exists(api_path):
 sys.path.insert(0,api_path)
 try:
 import qb
 except:
 continue
 break
 # this should throw an exception if we've exhuasted all other possibilities
 import qb

Below is the main function to run in this script
def main():

 # Below creates an empty dictionary to be filled by the following lines of code
 job = {}

 # Below defines the name of the Qube! job. This is the name that will be
 # displayed in the GUI and through the command line tools
 job['name'] = 'python test job'

 # Below defines how many Instances/subjobs the job is to spawn. Because we
 # will be running only a single command, there is no need to request more than 1.

 job['cpus'] = 1

 # Below defines the internal Qube! jobtype to be used to execute the job.
 # 'cmdline' tells Qube that on the backend, we will execute a single command line
 # command. This will be the same as opening a terminal/command prompt and typing
 # out a command.
 job['prototype'] = 'cmdline'

 # The below parameters are explained further in the "Job submission with job
 # package explained" page
 package = {}
 package['cmdline'] = 'hostname'
 job['package'] = package

 # Below creates an empty list filled by the following lines of code.
 listOfJobsToSubmit = []

 # Below evaluates the jobs to be submitted and adds the to the above list
 listOfJobsToSubmit.append(job)

 # Below calls the list of jobs to be submitted and then prints the job IDs for
each
 # While it is not strictly necessary that one submits a list of jobs, it is a good
 # habit to start, so we will only submit lists of jobs. It is, however, perfectly
 # acceptable to qb.submit(job)
 listOfSubmittedJobs = qb.submit(listOfJobsToSubmit)
 for job in listOfSubmittedJobs:
 print(job['id'])
Below runs the "main" function
if __name__ == "__main__":
 main()

 sys.exit(0)

This example and others like it can be found in:

Windows - C:\Program Files\pfx\qube\examples
macOS - /Application/pfx/qube/examples
Linux - /usr/local/pfx/qube/examples

Continue to Basic python job submission II. Frames

http://docs.pipelinefx.com/display/QUBE/Basic+python+job+submission+II.+Frames

	Basic python job submission I. Single command

