
Cross-Platform Rendering

Rendering on Mixed-OS farms or in Mixed-OS facilities
Many Qube customers have artists running on one operating system while the render farm runs on another. Some have render farms made up of
multiple operating systems. In both cases, rendering becomes a problem as paths are different across operating systems. For example, the path
to a Maya scene file on OS X may be "/Volumes/server/projects/foo/maya.mb" whereas the path to the same file on Windows is
"X:\Projects\foo\maya.mb" and on Linux is "/media/projects/foo/maya.mb". To complicate matters, the path to the renderer is likely different
across operating systems as well.

We have made use of or developed ways of working with heterogeneous facilities: OS-level adaptations, worker-side path translation maps,
client-side path translation maps, and "appFinder" jobs. There is a time and a place for each. The details follow:

OS-Level Adaptations
This is a primary recommended solution. It works in almost all cases when a job is submitted from Windows and run on another OS (dueexcept
to the direction of the path separators and/or the leading drive letter) -- For that situation, you will need to set up some form of path translation as
described in another section. In all other cases, this will work not only for resolving paths to project files, but also resolving references used within
the project file - something that the other methods can not do. You will, however, need to perform these actions on every machine in your render
farm individually.

The idea is that you want the path to any file to resolve the same way on all operating systems. For each OS, this is accomplished through the
use of symbolic links. In our example above, we described the path to a file "maya.mb" on three OSs:

OS Path

Windows X:\Projects\foo\maya.mb
\\server\Projects\foo\maya.mb

OS X /Volumes/server/projects/foo/maya.mb

Linux /media/projects/foo/maya.mb

OS X to Windows example

When an artist is running OS X but the workers are running Windows, you will want to make Windows recognize the OS X path. The job will be
sent with the path to the maya file as "/Volumes/server/projects/foo/maya.mb". Keeping in mind that Windows assumes the system drive when no
drive letter is given, that path will get a C: prepended to it. We are now working with:

 path

evaluated C:/Volumes/server/projects/foo/maya.mb

actual X:\Projects\foo\maya.mb -or-
\\server\Projects\foo\maya.mb

So the differences is c:/Volumes/server - vs - X:. Beyond that, the paths are the same. Our job, then, is to link the two paths through symbolic
links. On windows, this is done on the command prompt with :mklink

mkdir c:\Volumes\server
cd /d c:\Volumes\server
mklink projects X:\Projects - or - mklink server \\server\Projects

Now you can:

1.
2.

Windows Paths
When windows evaluates a path without a drive letter, the root drive (typically C:) is assumed.
Most applications that run cross-platform will accept either forward or backward slashes as path separators

http://technet.microsoft.com/en-us/library/cc753194(v=ws.10).aspx

dir X:\Projects\foo\maya.mb
dir \\server\Projects\foo\maya.mb
dir C:/Volumes/server/projects/foo/maya.mb

 and get the same results each time.

OS X to Linux example

OS X and Linux integration is done in a similar manner. We want to make the OS X path work on the Linux machine. In our example above, the
OS X path to maya.mb is "/Volumes/server/projects/foo/maya.mb" whereas the Linux path to that file is "/media/projects/foo/maya.mb". Both
paths are the same starting at "projects", therefore, we need to make the OS X directories on the Linux machines with an appropriate symlink, as
follows:

sudo mkdir -pv /Volumes/server
cd /Volumes/server
sudo ln -sv /media/projects

Now you can:

ls /Volumes/server/projects/
ls /media/projects

and get the same result (note the use of the trailing slash in the first example)

Note that Linux to OS X operates exactly the same way with the same commands - you'll just need to replicate the start of the Linux
path on OS X through the terminal.

Worker-side Path Translation
Starting with Qube 6.4-2, path translation can happen at the worker level. This has an advantage over client-side path translation in that each
worker can define the appropriate translation maps for itself rather than using a generic map for all machines.

The basic idea here is that we do simple string replacement for paths that are found in the submission dialog. Being that we are only converting
submission parameters, any internal references to paths may still be broken. For this type of path translation to work, the application must be
using relative paths for assets.

Worker-side path translation is configured in the worker's local qb.conf or in the supervisor's central qbwrk.conf through the worker_path_map
variable.

For detailed instructions, see .worker_path_map

To centrally manage worker path maps, see Centralized Worker Configuration

Client-side Path Translation
Client-side path translation is similar to worker-side path translation in that it does a simple find and replace on paths in the submission dialog.
 Unlike worker-side path translation, client-side path translation happens when the job is submitting, which means you must submit from one OS
and render on the same other OS - you cannot render on multiple OSs like you can work worker-side path translation.

Client-side path translation is configured in the GUI's "Path Translation Map" section in the preferences.

To centrally manage client-side path translation, see the section on "Studio wide preferenes" in WV Preferences

AppFinder jobs

http://docs.pipelinefx.com/display/QUBE/worker_path_map
http://docs.pipelinefx.com/display/QUBE/Centralized+Worker+Configuration

The last topic for cross-platofrm rendering is the path to the application itself. Maya, for example, may be in either /Applications/Autodesk/
 or , or some other custom locationmaya<ver>/Maya.app, C:/Program Files/Autodesk/Maya<ver>, /usr/autodesk/maya<ver>

based on the operating system.

Jobtypes have handled this situation for years, but applications that do not have or use jobtypes (like After Effects or Cinema 4D) have not been
able to run simultaneously on multiple operating systems until now appFinder jobs were introduced in Qube 6.4-2

The basic idea is that you define (or use) an application key, then define the known location(s) for that application. When submitting, you use the
key for the executable field & let the appFinder do the rest.

AppFinder jobs require Python 2.x be installed on the workers. OS X comes with python pre-installed. Linux users can install python through the
built-in package manager. Windows users will need to install Python manually. See .Installing Python

For detailed instructions, see AppFinder Jobs

http://docs.pipelinefx.com/display/SANDBOXQUB066/Installing+Python
http://docs.pipelinefx.com/display/QUBE/AppFinder+Jobs

	Cross-Platform Rendering

